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Abstract
In this paper, we study the two-dimensional Burgers–Korteweg–de Vries (2D-
BKdV) equation by analysing an equivalent two-dimensional autonomous
system, which indicates that under some particular conditions, the 2D-BKdV
equation has a unique bounded travelling wave solution. Then by using a
direct method, a travelling solitary wave solution to the 2D-BKdV equation
is expressed explicitly, which appears to be more efficient than the existing
methods proposed in the literature. At the end of the paper, the asymptotic
behaviour of the proper solutions of the 2D-BKdV equation is established by
applying the qualitative theory of differential equations.

PACS numbers: 02.30.Jr, 02.30.Oz, 04.20.Jb

1. Introduction

The last few decades have seen an enormous growth in the applicability of nonlinear models
and in the development of related nonlinear concepts. This has been driven by modern
computer power as well as by the discovery of new mathematical techniques, which include
two contrasting themes: (i) the theory of dynamical systems, most popularly associated
with the study of chaos, and (ii) the theory of integrable systems associated, among other
things, with the study of solitons. However, not all systems arising from physical phenomena
are integrable, for example, the two-dimensional Burgers–Korteweg–de Vries (2D-BKdV)
equation. Therefore, a direct method together with qualitative analysis for treating such
nonlinear systems appears to be more powerful and important. Applications of nonlinear
models range from atmospheric science to condensed matter physics and to biology, from the
smallest scales of theoretical particle physics up to the largest scales of cosmic structure.

* Main results have been presented at ‘The 2003 Texas Partial Differential Equations Conference’, University of
North Texas, Denton, USA.
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Consider the 2D-BKdV equation

(Ut + αUUx + βUxx + sUxxx)x + γUyy = 0 (1)

where α, β, s and γ are real constants and αβsγ �= 0. Equation (1) is a two-dimensional
generalization of the Burgers–Korteweg–de Vries equation

Ut + αUUx + βUxx + sUxxx = 0 (2)

which arises from many different physical contexts as a nonlinear model equation incorporating
the effects of dispersion, dissipation and nonlinearity. Johnson derived (2) as the governing
equation for waves propagating in a liquid-filled elastic tube [1] and Wijngaarden and Gao
used it as a nonlinear model in the flow of liquids containing gas bubbles [2] and turbulence
[3]. Grad and Hu used a steady state version of (2) to describe a weak shock profile in
plasmas [4].

During the last few decades, many theoretical issues concerning the exact solutions of
2D-BKdV equation have received considerable attention. Barrera and Brugarino applied Lie
group analysis to study the similarity solutions of (1) and examined some features of these
invariant solutions, but the explicit travelling wave solution to (1) was not shown [5]. Li and
Wang used the Hopf–Cole transformation and a computer algebra system to study (1) and
found an exact travelling wave solution to (1) [6]. In the mean time, Ma proposed a bounded
travelling wave solution to (1) by applying a special solution of square Hopf–Cole type to
an ordinary differential equation [7]. These two methods were compared to each other, and
the solutions are proved to be equivalent by Parkes [8]. Fan obtained the same result by
using an extended tanh-function method for constructing multiple travelling wave solutions of
nonlinear partial differential equations in a unified way [9]. Recently, Fan et al [10] claimed
that a new complex line soliton for the 2D-BKdV equation was obtained by making use of
the same technique as described in [9], and Elwakil et al [11] claimed that a new travelling
solitary wave solution was obtained by using a modified extended tanh-function method. In
our recent papers [12–14], we studied equation (1) by utilizing the first integral method and
the Painlevé analysis, respectively, and obtained a more general travelling wave solution in
terms of elliptic functions.

In the present paper, our purpose is to apply the qualitative theory of differential equations
to the studies of travelling wave solutions and proper solutions of the 2D-BKdV equation. A
travelling wave solution is obtained more efficiently by a direct method and the asymptotic
behaviour of proper solutions is presented by using Hardy’s theorem.

Assume that equation (1) has an exact solution in the form

U(x, y, t) = U(ξ) ξ = hx + ly − wt (3)

where h, l, w are real constants to be determined. Substitution of (3) into equation (1) yields

−whUξξ + αh2(UUξ )ξ + βh3Uξξξ + sh4Uξξξξ + γ l2Uξξ = 0.

Integrating the above equation twice with respect to ξ , then we have

sh4Uξξ + βh3Uξ +
α

2
h2U 2 + γ l2U − whU = R

where R is the second integration constant and the first one is taken to be zero. Rewrite this
second-order ordinary differential equation as

U ′′(ξ) − rU ′(ξ) − aU 2(ξ) − bU(ξ) − d = 0 (4)

where r = − β

sh
, a = − α

2sh2 , b = wh−γ l2

sh4 and d = R
sh4 .
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Figure 1. An isolated and closed orbit with an equilibrium point in the Poincaré phase plane
represents a bell solitary wave solution in the (ξ, u)-plane.

When
√

b2 − 4ad > 0, to remove the constant term in equation (4), let

U = −1

a
u(ξ) − b

2a
−

√
b2 − 4ad

2a
(5)

and substituting (5) into equation (4) then yields

u′′(ξ) + δu′(ξ) + u2(ξ) − µu(ξ) = 0 (6)

where δ = −r and µ = −√
b2 − 4ad . Letting v = uξ , equation (6) is equivalent to{

u̇ = v = P(u, v)

v̇ = −δv − u2 + µu = Q(u, v).
(7)

Equation (7) is a two-dimensional autonomous system. It is well known that plane
autonomous systems are particularly useful in physics and engineering. The equilibrium point
in the Poincaré phase plane always corresponds to a static state. If (u0, v0) is an equilibrium
point of (7), then any orbit except itself cannot approach (u0, v0) within finite time. Conversely,
if an orbit of (7) approaches (u0, v0) as ξ → ∞ (or −∞), then (u0, v0) must be an equilibrium
point of (7). In the Poincaré phase plane, an isolated and closed orbit which has no equilibrium
point on itself represents a periodic oscillation to equation (6) in the (ξ, u)-plane. An orbit
which emanates from an equilibrium point and terminates at a different equilibrium point
as ξ → ∞ (or −∞) represents a kink-profile solitary wave solution in the (ξ, u)-plane to
equation (6). An isolated and closed orbit which emanates from an equilibrium point and also
terminates at the same equilibrium point as ξ → ∞ (or −∞), represents a bell-profile solitary
wave solution to equation (6) in the (ξ, u)-plane (see figure 1).

The rest of the paper is organized as follows. In section 2, we analyse the stability and
bifurcation of system (7), which is equivalent to the 2D-BKdV equation (1) after making
travelling wave transformation and integration. In section 3, a travelling wave solution to
the 2D-BKdV equation (1) is obtained in terms of the Weierstrass elliptic function, and
comparison with the existing results is shown at the end of this section. In section 4, the
asymptotic behaviour of proper solutions of equation (1) is illustrated. Section 5 is a brief
conclusion. We point out that some other nonlinear differential equations, such as Fisher’s
equation can be handled in a similar manner.

2. The stability of system (7)

Assume that δ < 0 (the discussion for the case δ > 0 is closely similar). System (7) has two
equilibrium points A(0, 0) and B(u, 0).
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Figure 2. The global structure of system (7).

(i) δ2

4 > µ > 0, A(0, 0) is a saddle point and B(µ, 0) is an unstable nodal point.

(ii) − δ2

4 < µ < 0, A(0, 0) is an unstable nodal point and B(µ, 0) is a saddle point.

(iii) δ2

4 < µ,A(0, 0) is a saddle point and B(µ, 0) is an unstable spiral point.

(iv) − δ2

4 > µ,A(0, 0) is an unstable spiral point and B(µ, 0) is a saddle point.

Note that µ in (7) is negative, so we only need to consider the cases of (ii) and (iv).
Utilizing the Poincaré transformations

u = 1

z
v = X

z
dτ = dt

z
(z �= 0)

and

u = Y

z
v = 1

z
dτ = dt

z
(z �= 0)

one can find that (7) has two infinite equilibrium points E and F in v-axis. E is a source
point and F is a sink point. The global structure of system (7) in the case (ii) is illustrated in
figure 2.

From figure 2, one can see that except the equilibrium points A,B and the orbit L(A,B),
all other orbits in the Poincaré phase plane either depart from the infinite equilibrium point E
or approach the infinite equilibrium point F as ξ → +∞. This implies that the v-coordinate
of each point lying on the orbits except A,B and L(A,B) is unbounded. By virtue of the
mean-value theorem and the formula dv

du
= −δ − u2−µu

v
, one can see that the u-coordinate of

each point lying on the same orbits must be unbounded too.
Since ∂P (u,v)

∂u
+ ∂Q(u,v)

∂v
= −δ �= 0, (7) has no closed orbit in the Poincaré phase plane

according to the Poincaré–Bendixson theorem ([15]). This implies that, equation (6) neither
has bell solitary wave solution, nor has bounded periodic travelling wave solution.

Since the plane autonomous system (7) is equivalent to equation (6), each nontrivial
bounded travelling wave solution u = u(ξ) of equation (6) in the (ξ, u)-plane corresponds to
an orbit of system (7) in the Poincaré phase plane, in which the u-coordinate of each point is
bounded. According to the above analysis, the unique orbit which satisfies this requirement
under the condition − δ2

4 < µ < 0 is L(A,B). Namely, in this case, the nontrivial bounded
travelling wave solution u(ξ) of equation (6) is unique. Moreover, utilizing the qualitative
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analysis as described in [12], we can conclude that when r2 > 4
√

b2 − 4ad , this nontrivial
bounded travelling wave solution u(ξ) of equation (6) is strictly monotone decreasing or
increasing with respect to ξ , which depends on the sign of a.

Now, we are considering the stability near the origin for system (7). It will help us
understand that the stability of system (7) actually depends on the sign of µ. Making the
similarity transformation

(u

v

)
=

(
1 1
0 −δ

)
·
(

x

y

)
. (8)

and substituting (8) into (7), then yields(
ẋ

ẏ

)
=

(
0 0
0 −δ

)
·
(

x

y

)
+

µ

δ
·
(

1 1
−1 −1

)
·
(

x

y

)
+

1

δ
·
(−(x + y)2

(x + y)2

)
. (9)

Fix δ > 0 and consider the corresponding extension system


ẋ = µ

δ
(x + y) − 1

δ
(x + y)2

µ̇ = 0

ẏ = −δy − µ

δ
(x + y) + 1

δ
(x + y)2.

(10)

By virtue of the stable manifold theorem for a hyperbolic equilibrium point, system (10)
has a two-dimensional centre manifold, which is tangent to the (x, µ)-plane at the equilibrium
point (x, µ, y) = (0, 0, 0). Denote by y = h(x, µ) the centre manifold of (10) near the origin,
where h : R × R → R and satisfies

h(0, 0) = 0
∂h(x, µ)

∂x
= ∂h(x, µ)

∂µ

∣∣∣∣
(0,0)

= 0.

By making use of the Taylor expansion, y = h(x, µ) can be expressed as

h(x, µ) = a1x
2 + b1xµ + c1µ

2 + o(3) (11)

where o(3) contains terms of power 3 or higher. Thus, we have

ẏ = ∂h(x, µ)

∂x
· ẋ +

∂h(x, µ)

∂µ
· µ̇

= −δh(x, µ) − µ

δ
[x + h(x, µ)] +

1

δ
[x + h(x, µ)]2. (12)

Substituting (11) and the third equation of (10) into (12), we get

(2a1x + b1µ)
[µ

δ
(x + a1x

2 + bxµ + cµ2 + o(3)
]

− 1

δ
[x + a1x

2 + bxµ + cµ2 + o(3)]2

= −δ[a1x
2 + bxµ + cµ2 + o(3)] − µ

δ
[x + a1x

2 + bxµ + cµ2 + o(3)]

+
1

δ
[x + a1x

2 + bxµ + cµ2 + o(3)]2. (13)

Equating the coefficients of x2, xµ and µ2 on both sides of (13), respectively, then yields

a1 = 1

δ2
b1 = − 1

δ2
c1 = 0.

Returning to the x-equation in (10), we have

ẋ = 1

δ

(
1 − µ

δ2

)
x(µ − x) + o(3) (µ̇ = 0). (14)
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Figure 3. Transcritical bifurcation.

Figure 4. The centre manifold of system (10).

The equilibria of (14) are x = 0 and x = µ. When δ and 1 − µ

δ2 have the same sign,
the stable branches are illustrated in figure 3 by heavy lines and the unstable branches are
indicated by broken lines. The trivial branch x = 0 loses stability at the bifurcation point
(x, µ) = (0, 0). Simultaneously, there is an exchange of stability to the other branch. This
implies that (7) loses its stability at (u, µ) = (0, 0). When δ > 0 and µ < 0 (|µ| is small),
that is, when βsh > 0 and (wh−γ l2)2 + 2αRh2 > 0, there exists a unique nontrivial bounded
travelling wave solution to equation (1), which is stable and approaches to two bounded limits
as ξ → +∞ and ξ → −∞, respectively. These two limits depend on the corresponding
u-coordinates of equilibrium points A and B.

The centre manifold Wc of system (10) is depicted in figure 4. One can see that near the
equilibrium point (x, µ, y) = (0, 0, 0), for each fixed µ, the stability of equilibrium points of
system (9) is also determined by (14).

3. The travelling wave solution to the 2D-BKdV equation

In the preceding section, we concluded that under some particular conditions, equation (1)
does have nontrivial bounded travelling wave solution which is monotonic. In this section, we
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restrict our attention to the study of seeking the exact travelling wave solution of equation (1)
by a direct method.

First, make the natural logarithm transformation

ξ = −1

δ
ln τ

then equation (6) becomes

δ2τ 2 d2u

dτ 2
+ u2 − µu = 0. (15)

Take the variable transformation as described in [16]

q = τ k u = τ− 1
2 (k−1) · H(q)

then equation (15) becomes

d2H

dq2
= − 1

δ2k2
q

1−5k
2k H 2 (16)

where k =
√

1 − 4
√

b2−4ad
δ2 .

To simplify the coefficient on the right-hand side of (16) to be 1, we assume

φ = q H = −δ2k2ρ

then equation (16) reduces to

d2ρ

dφ2
= φmρ2 (17)

where m = 1−5k
2k

.
Therefore, from equation (17) we can derive the following results immediately:
(I) When k = 1

5 , i.e.,
√

b2 − 4ad = 6r2

25 , changing to our original variables, we obtain an
exact solution to equation (1)

U(x, y, t) = − 2β2

25αs
· e− 2β

5sh
(hx+ly−wt) · ρ

(
e− β

5sh
(hx+ly−wt) + c

)
+

6β2

25αs
+

wh − γ l2

αh2
(18)

where c is the arbitrary integration constant and ρ(φ, g2, g3) is the Weierstrass elliptic function
with invariants g2 and g3 [17, 18] satisfying

d2ρ

dφ2
= ρ2. (19)

Since ρ(φ) = 6(φ + C0)
−2 is a particular solution of equation (19), apparently we can

obtain a particular travelling solitary wave solution to equation (1) from (18) directly

U(x, y, t) = −12β2

25αs
· e− 2β

5sh
(hx+ly−wt)

[
e− β

5sh
(hx+ly−wt) + C1

]2 +
wh − γ l2

αh2
+

6β2

25αs
(20)

where C1 is the arbitrary constant.
(II) In general, equation (17) has a nontrivial solution in the polynomial form ρ(φ) = c0φ

ω,
where

ω = −m − 2 c0 = (m + 2)(m + 3). (21)

Reverting to system (7), we can see that this solution corresponds to the equilibrium point
B(µ, 0) and the trivial solution ρ = 0 corresponds to the equilibrium point A(0, 0).

Compared with various methods proposed for the 2D-BKdV equation (1) [6–14], the
direct method introduced herein is more straightforward and less calculative. It is notable
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that (18) is not only more general than those solutions presented in [6–12], but also confirms
the qualitative analysis discussed in the last section. Note that the solution derived by Ma
[7, p L19] is only identical to (20) while c is positive. The case where c is negative is not
discussed in [7]. By using the Hopf–Cole transformation and a computer algebra system, Li
and Wang obtained a travelling wave solution to (1) in [6] simultaneously, which is proved to
be equivalent to that obtained in [7] by Parkes in 1994 (see [8]). In [12], we applied the first
integral method to study equation (1) and obtained a travelling solitary wave solution of the
form (20), but (18) was not derived at that moment. In [13], we developed this technique to
obtain (18). In our last paper [14], we obtained the same result by making use of the Painlevé
analysis. However, the derivations for (18) in [13, 14] indeed contain tedious and complicated
computations. As pointed out in [13], recently, a new complex line soliton claimed by
Fan et al [10, p 378] and a new travelling solitary wave solution claimed by Elwakil et al
[11, formula (12), p 183] are the particular cases of (20) where C1 = i and C1 = −1,
respectively.

4. The asymptotic behaviour of proper solutions

In section 3, we reduce the 2D-BKdV equation (1) to (17). For a certain value of m, it is
possible to reduce (17) to a nonlinear equation with constant coefficients and thereby the way
to the application of the Poincaré–Liapounov theory to the study of (17). Nevertheless, by
applying the qualitative theory of differential equations, the solutions to equation (17), in
general, cannot be expressed explicitly. Therefore, analysing the asymptotic behaviour of the
solutions of equation (1) becomes sufficiently important and necessary. In order to isolate the
large class tractable solutions, we employ the concept of proper solution, which is one that is
real and nontrivial with continuous derivative for ξ > ξ0. Since the arithmetic nature of m in
equation (17) will have considerable influence upon the possible types of proper solutions, we
only consider the positive proper solutions of equation (17). The arguments for the negative
case can be handled similarly.

To present our discussion in a straightforward manner, we need the following theorem:

Hardy’s theorem. Any solution of the equation

du

dt
= P(u, t)

Q(u, t)

continuous for t > t0, is ultimately monotonic, together with all its derivatives, and satisfies
one or the other of the relations

u ∼ Atj eP(t) u ∼ Atj (log t)1/l

where P(t) is a polynomial in t, A is constant and l is an integer.

Applying Hardy’s theorem, we can obtain the asymptotic behaviour of proper solutions of

the 2D-BKdV equation. That is, when
√

b2 − 4ad < δ2, i.e.,
√

(wh−γ l2)2+2αRh2

s2h4 <
β2

4s2 , proper
solutions of the 2D-BKdV equation have the asymptotic form as follows:

U(x, y, t) ∼ − sgn(s)

αh2

√
(wh − γ l2)2 + 2αRh2 +

wh − γ l2

αh2
. (22)

Now, we prove (22). From equation (17), it is easy to see that ρ(φ) must be eventually
monotone. Since if there is a point φ0 such that ρ ′(φ0) = 0, ρ(φ) can only have a minimum
at φ = φ0 due to the fact that ρ ′′ = φmρ2 > 0. Hence ρ is eventually monotone decreasing or
monotone increasing.
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Now let us set ρ = c0φ
ωT , here c0 and ω have the same values as given in (21). The

equation for T is

T ′′ + (2ω − 1)T ′ + ω(ω − 1)(T − T 2) = 0. (23)

Note that T = 0 and T = 1 are two trivial solutions to equation (23). Since 0 < k < 1,
we get ω = 1

2 − 1
2k

< 0 and 2ω − 1 < 0 < ω(ω − 1).
Consider the possible alternatives for T; we already know T > 0. In the case of the

solutions in the region 0 < T < 1. From the ultimate monotonicity of the solutions, we have
T → 0 or T → 1 as φ → ∞. One can easily rule out the possibility that T → 0. The
characteristic roots of the linearization of (23) are given by −ω and 1 − ω. Since both roots
are positive, it follows that T = 0 is a thoroughly unstable solution and thus that no other
solution of (23) can tend to this as φ → ∞. Thus the alternative is T → 1, which implies

ρ ∼
(

1

2k
− 1

2

) (
1

2k
+

1

2

)
φ

1
2 − 1

2k . (24)

In the case that T crosses T = 1, it must continue monotonically increasing, since any
turning point must be a minimum. That T approaches a finite limit L greater than 1 is possible.
In this case, T ′ → 0 and T ′′ → 0, so any finite limit including L must be a root of T −T 2 = 0.
This yields a contradiction. Thus, we can deduce that T → ∞. We now investigate this
possibility by using Hardy’s theorem. Setting F = T ′, equation (23) reduces to

F
dF

dT
+ (2ω − 1)F + ω(ω − 1) = 0. (25)

As T → ∞, we have either

F ∼ eh(T )T c1 (26)

where h(T ) is a polynomial in T, or

F ∼ T c2(log T )c3 (27)

where ci (i = 1, 2, 3) are constants.
Combine (25) with (26) or (27), respectively. Evaluation of the constants indicates that

both cases lead to F � T 1+ε with ε > 0 as T → ∞. Going back to our assumption F = dT
dφ

,
one can see that this is impossible if we are considering proper solutions to equation (23).
Hence again if T > 1, we have T → 1 as φ → ∞, which yields (24).

Using the inverse of transformations described in section 3, we have

H ∼ −δ2k2ρ(q) ∼ −r2 · 1 − k2

4
· q

1
2 − 1

2k

and

u ∼ τ− 1
2 (k−1) · H(q) ∼ −

√
b2 − 4ad.

Making use of (5) and changing to the original variables, we obtain

U(x, y, t) ∼
√

b2 − 4ad

2a
− b

2a

∼ − sgn(s)

αh2

√
(wh − γ l2)2 + 2αRh2 +

wh − γ l2

αh2
.

This is the asymptotic behaviour of proper solutions of the 2D-BKdV equation (1).
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5. Conclusion

In summary, in this work, first we analyse the stability and bifurcation of system (7), which
is equivalent to the 2D-BKdV equation. Then an exact solution to the 2D-BKdV equation is
expressed in terms of the Weierstrass elliptic function, and compared with the existing results
as shown in section 3. Finally, the use of Hardy’s theorem illustrates the asymptotic behaviour
of proper solutions of equation (1). The technique for seeking travelling wave solutions
described herein appears to be more efficient and less computational than those methods used
in [6–14]. It is worthwhile to point out that the above results do not depend on the particular
example of the 2D-BKdV equation. One can definitely apply the coordinate transformations
given in section 3 and Hardy’s theorem to study many nonlinear differential equations.

Some representative equations are listed below:

(1) Fisher’s equation [19]: ut = vuxx + su(1 − u).
(2) Modified Burgers–KdV equation [20]: ut + βu2ux + µuxx − suxxx = 0.
(3) Compound KdV equation [20]: ut + αuux + βu2ux + suxxx = 0.
(4) Generalized Klein–Gordon equation [21, 22]: utt − (uxx + uyy) + α2ut + g(uu∗)u = 0.
(5) Nonlinear Schrödinger equation [21, 22]: iut + uxx − uyy + g(uu∗)u = 0.
(6) Emden equation [16]: vu′′ + 2u′ + αvmun = 0, α > 0.
(7) Emden–Fowler equation [16]: d

dt

(
tq du

dt

) ± t δun = 0.
(8) An approximate sine-Gordon equation [23]: utt + r1ut − r2�u(n) + u − 1

6u3 = d3u
3 +

d2u
2 + d1u + d0.

(9) Combined dissipative double-dispersive equation [24]: utt −α1uxx −α2uxxt −α3(u)2
xx −

α4uxxxx + α5uxxtt = 0.
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